ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology						
Department	Mathematics	NQF level					
Course Title	mathematical method	Code	505252	Prerequisite	-		
Credit Hours	3	Theory	3 Practical -				
Course Leader	Dr.Hamzeh Zureigat	email	hamzeh.zu@jadara.edu.jo				
Lecturers	Dr.Hamzeh Zureigat	emails	hamzeh.zu @jadara.edu.jo				
Lecture time	8:30 -10:00	Classroom	-				
Semester	second semester	Production	Updated				
Awards	-	Attendance Fulltime					

Short Description

• the primary objective of the course is introduce to Fourier series, beta and gamma functions, definition of the Laplace transform, calculating inverse Laplace transforms, Legendre and associated Legendre functions, eigenvalues and Eigen functions, strum-liouville boundary value problems, series solutions near regular singular points (Bessel functions).

Course Objectives

- Periodic functions
- Fourier series
- Fourier sine and cosine series
- Special types functions (Error/ gamma / beta functions)
- Definition of the Laplace Transform.
- Calculating inverse Laplace Transforms
- Laplace Transform Solution of differential equations with polynomial coefficients.
- Legendre and associated Legendre functions
- Eigenvalues and Eigen functions
- Sturm- Liouville Boundary Value problems,
- Bessel functions

Learning Outcomes

A. Knowledge - Theoretical Understanding

- a1) Discuss and interpret the foundational ideas of Periodic functions and Fourier series and Fourier sine and cosine.
- a2) Define and Solve the concepts of Laplace transform and calculating inverse Laplace transforms.

B. Knowledge - Practical Application

- a3) Analyze and apply properties of Special types functions and solve the Sturm- Liouville Boundary Value problems solve problems involving Legendre functions and Bessel functions and solve problems involving Bessel functions
- b1) Evaluate inverse Laplace transforms. Also, solving differential equations with polynomial coefficients involving Laplace transform..

C. Skills - Generic Problem Solving and Analytical Skills

b2) Distinguish and implement techniques for solving special types functions, Legendre equations, Sturm-Liouville Boundary Value problems and Bessel functions

D. Skills - Communication, ICT, and Numeracy

c1) Formulate and solve various types of integral problems and certain applications using special types functions.

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

- E-learning.
- Distance learning using (Microsoft Teams).
- Problem based learning (PBL),
- Direct students to self-learning through textbooks, library, e-library, and research papers.
- Tutorials and discussion.

Assessment Methods

Lectures, Assignments, Exams, Quizzes, Discussion and Interaction

	Course Contents						
W	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods		
1.	3	a1	Periodic functions	Lecturing, examples, Discussion.	Assignments, Exams, Quizzes, Discussion and Interaction		
2.	3	a1, b1	Fourier series	Lecturing, examples, Discussion.	Assignments, Exams, Quizzes, Discussion and Interaction		
3.	3	a2, b1	Fourier sine and cosine series	Lecturing, examples Discussion.	Assignments, Exams, Quizzes, Discussion and		

					Interaction	
4.	3	a2, b1, c1.	Special types functions (Error and gamma functions)	Lecturing, examples Discussion.	Assignments, Exams, Quizzes, Discussion and Interaction	
5.	3	a3,c1	Special types functions (beta functions)	Lecturing, examples Discussion.	Assignments, Exams, Quizzes, Discussion and Interaction	
6.	3	a2, b1	Definition of the Laplace Transform	Lecturing, examples Discussion.	Assignments, Exams, Quizzes, Discussion and Interaction	
7.	3	a2, b1	Calculating inverse Laplace Transforms	Lecturing, oral discussion	Assignments, Exams, Quizzes, Discussion and Interaction	
8.	3	a2, b1, c1	Laplace Transform Solution of differential equations with polynomial coefficients	Lecturing, oral discussion	Assignments, Exams, Quizzes, Discussion and Interaction	
9.	3	a3	Legendre functions	Lecturing, examples	Assignments, Exams, Quizzes, Discussion and Interaction	
10.	3	a3, b2	Orthogonally and Normalization of Legendre polynomials	Lecturing, examples	Assignments, Exams, Quizzes, Discussion and Interaction	
11.	3	a3	Legendre and associated Legendre series	Lecturing, examples	Assignments, Exams, Quizzes, Discussion and Interaction	
12.	3	a3, b2	Eigenvalues and Eigen functions	Lecturing, oral discussion	Assignments, Exams, Quizzes, Discussion and Interaction	
13.	3	a3, b2	Sturm- Liouville Boundary	Lecturing, oral discussion	Assignments, Exams,	

			Value problems		Quizzes, Discussion and Interaction
14.	3	a3, b2	Nonhomogeneous Boundary value problems. Kinds of Sturm – Liouville problems.	Lecturing, examples	Assignments, Exams, Quizzes, Discussion and Interaction
15.	3	b2	Bessel functions	Lecturing, examples	Assignments, Exams, Quizzes, Discussion and Interaction

Infrastructure						
Textbook	Advanced engineering mathematics o'neil 8th edition					
References	 Elementary Differential Equations and Boundary Value Problems, Boyce and Diprima. 9th ed., 2010. (QA371, B77) Mathematical Physic, Butkov. 1968. (QA401, B78) Advanced Engineering Mathematics. O'Neil. 5th ed., 2003. (QA401, O54) 					
Required reading						
Electronic materials						
Other						

Course Assessment Plan								
Assessment Method		Grade		CLOs				
		Graue	a1	a2	a3	b1	b2	c1
	First (Midterm)	30	5	5	5	10	5	0
	Second (if applicable)							
Final Exam		50	8	12	10	8	7	5
	Coursework							
ds	Assignments	10	3	3	3			
rk etho	Case study							
ewo t me	Discussion and interaction							
Coursework ssment meth	Group work activities							
Coursework assessment methods	Lab tests and assignments	_						
as	Presentations							

	Quizzes	10		5	6	
Total		100				

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.

Chair of Mathematics Department: Dr. Belal Batiha

Course Leader: Dr. Hamzeh Zureigat