

COURSE DESCRIPTIONS

Faculty	Science and Information Technology					
Department	Mathematics	NQF level				
Course Title	Calculus I Code 853101 I			Prerequisite		
Credit Hours	3 Theory 3 Practical					
Course Leader	Dr. Areen Alkhateeb	Alkhateeb email Areen.k@jadara.edu.jo				
Lecturers	Dr. Areen Alkhateeb Dr Ahmed Heilat Dr. Tareq Qawasmeh	emails	Areen.k@jadara.edu.jo a.heilat@jadara.edu.jo ta.gawasmeh@jadara.edu .jo			
Lecture time	8:30-10:00 Sun-Tus	Classroom	D006 + Online			
Semester	2	Production	2021 Updated 2022			
Awards	Attendance Fulltime					

Short Description

Functions: domain, operations on functions, graphs of functions; trigonometric functions; limits: meaning of a limit, computational techniques, limits at infinity, infinite limits; continuity; limits and continuity of trigonometric functions; the derivative: techniques of differentiation, derivatives of trigonometric functions; the chain rule; implicit differentiation; differentials; Roll's Theorem; the mean value theorem; the extended mean value theorem; L'Hopital's rule; increasing and decreasing functions; concavity; maximum and minimum values of a function; graphs of functions including rational functions (asymptotes) and functions with vertical tangents (cusps); antiderivatives; the indefinite integral; the definite integral; the fundamental theorem of calculus; logarithmic and exponential functions and their derivatives and integrals; limits (the indeterminate forms); some techniques of integration.

Course Objectives

Upon completion of this course, the student should be able to:

- Know the basic theories of calculus and the accompanying mathematical techniques and procedures required and become well-trained on them.
- Solve several practical applications of calculus and to solve several applied problems using differentiation and integration in a clear, logical manner.
- Develop ability to reason logically, then transfer mathematical concepts from one situation to another rather than memorizing mechanical procedures..

Learning Outcomes

A. Knowledge - Theoretical Understanding

Student is expected to

- a1) Explain the limit for various types of functions and explain whether a given function is continuous at a certain point.
- a2) Discuss the idea of the differentiation and integration for various types of functions

B. Knowledge - Practical Application

a3) Use correctly some famous Theorems in calculus such as: Intermediate Value Theorem, Mean Value Theorem, and Fundamental Theorem of Calculus.

C. Skills - Generic Problem Solving and Analytical Skills

- b1) Calculate limits and determine continuity for functions.
- b2) Differentiate and integrate various types of functions correctly.

D. Skills - Communication, ICT, and Numeracy

b3) Gauge the capacity of knowledge by doing home works and exercises .

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

- Face to face learning
- E-learning.
- Distance learning using (Microsoft Teams).
- Problem based learning (PBL),
- Direct students to self-learning through textbooks, library, e-library, and research papers.
- Tutorials, and discussion.

Assessment Methods

Lectures, Assignments, Exams, Quizzes, Discussion and Interaction

	Course Contents						
Week	Day	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods	
	Sun	1.5	a1,b3	1.1 Real Numbers System,	Face to face learning	A 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
1.	Tus	1.5	a1,b3	1.2 Exponents and Surds	Face to face learning	Assignments, Exams, Quizzes, Discussion and Interaction	
	Sun	Sun 1.5 a1,b3		1.3 Functions	Face to face learning	Assignments,	
2.	Tus	1.5	a1,b3	1.4 Inverse functions.1.5 Trigonometric Functions	Face to face learning	Exams, Quizzes, Discussion and Interaction	
	Sun	1.5	a1,b3	1.7 Exponential Functions	Face to face learning	Assignments,	
3.	Tus	1.5	a1,b3	1.8 Logarithm Functions	Face to face learning	Exams, Quizzes, Discussion and Interaction	
4.	Sun	1.5	a1, b1,b3	2.1 Limit of a function and limit laws.	Face to face learning	Assignments, Exams, Quizzes,	

	Tus	1.5	a1,b1, b3	2.2 Computing limits.	Face to face learning	Discussion and Interaction
	Sun	1.5	a1,b1, b3	2.3 Limits involving infinity.	Face to face learning	Assignments,
5.	Tus	1.5	a1,b1, b3	2.4 Limits of trigonometric functions.	Face to face learning	- Exams, Quizzes, Discussion and Interaction
6.	Sun	1.5	a1,b1, a3	2.5 Continuity	Face to face learning	Assignments, Exams, Quizzes,
σ.	Tus	1.5	a1,b1, a3	2.5 Continuity	Face to face learning	Discussion and Interaction
	Sun	1.5	a2,b2, b3	3.1 The definition of the derivatives.	Face to face learning	Assignments, Exams, Quizzes,
7.	Tus	1.5	a2,b2, b3	3.2 Differentiation Formulas.	Face to face learning	Discussion and Interaction
	Sun	1.5	a2,b2, b3	3.3 Derivative of Trigonometric Functions.	Face to face learning	Assignments,
8.	Tus	1.5	a2,b2, b3	3.5 Derivative of Logarithm and Exponential Functions	Face to face learning	Exams, Quizzes, Discussion and Interaction
	Sun	1.5	a2,b2, b3	3.6 The Chain Rule.	Face to face learning	Assignments, Exams, Quizzes,
9.	Tus	1.5	a2,b2, b3	3.7 Implicit Differentiation	Face to face learning	Discussion and Interaction
	Sun	1.5	a2,b2	3.8 Higher Order Derivative.	Face to face learning	Assignments, Exams, Quizzes,
10.	Tus	1.5	a2,b2	3.8 Higher Order Derivative.	Face to face learning	Discussion and Interaction

Sun 11. Tus		1.5	a2,b2, b3	4.1 Critical Points.	Face to face learning	Assignments, Exams, Quizzes,	
		1 a7 h7 1		4.2 Extreme Value of Functions.	I Hace to tace		
	Sun			Face to face learning	Assignments, Exams, Quizzes,		
12.	Tus	1.5	a2,b2 b3,	4.4 Concavity.	Face to face learning	Discussion and Interaction	
12	Sun	1.5	a2, a3,b2	4.5 Curve Sketching.	Face to face learning	Assignments, Exams, Quizzes,	
13.	Tus 1.5		a2, a3,b2	4.6 The Mean Value Theorem.	Face to face learning	Discussion and Interaction	
	Sun	1.5	a2,b2, a3,b3	5.1 Indefinite Integrals.	Face to face learning	Assignments, Exams, Quizzes,	
14.	Tus	1.5	a2,b2, a3,b3	5.2 Computing Indefinite Integrals.5.4 The Definite Integrals.	Face to face learning	Discussion and Interaction	
15	Sun	1.5	a2,b2, a3,b3	6.1 Integration by Substitution.	Face to face learning	Assignments, Exams, Quizzes,	
15.	Tus	1.5	a2,b2, a3,b3	6.1 Integration by Substitution.	Face to face learning	Discussion and Interaction	
Final Exam						Exam	

Infrastructure				
Textbook	Calculus (The easy Way) by Dr. Belal Batiha			

References	James Stewart (2015) Calculus (Early Transcendental), 8th Edition, Thomson, Metric international version, Canada				
Required reading					
Electronic materials					
Other					

	Course Assessment Plan								
Assessment Method		Grade		CLOs					
			a1	a2	a3	b1	b2	b3	
First ((Midterm)	30	10	2		12	6		
Secon	d (if applicable)								
Final	Exam	50	8	11	17	4	10		
Cours	Coursework								
nt	Assignments	10						10	
sme	Case study								
sses	Discussion and interaction	5						5	
rk a etho	Group work activities Lab tests and assignments								
Lab tests and assignments									
Coursework assessment methods	Presentations								
Ö Quizzes		5		2			3		
Total		100							

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.

رئيس القسم: د. أيمن هزايمه